Básicamente, la notación científica consiste en representar un número entero o decimal como potencias de diez.
En el sistema decimal, cualquier número real puede expresarse mediante la denominada notación científica.
Para expresar un número en notación científica identificamos la coma decimal(si la hay) y la desplazamos hacia la izquierda si el número a convertir es mayor que 10, en cambio, si el número es menor que 1 (empieza con cero) la desplazamos hacia la derecha tantos lugares como sea necesario para que(en ambos casos) el único dígito que quede a la izquierda de la coma esté entre 1 y 9 y que todos los otros dígitos aparezcan a la derecha de la coma decimal.
Es más fácil entender con ejemplos:
732,5051 = 7,325051 • 102 (movimos la coma decimal 2 lugares hacia la izquierda)
−0,005612 = −5,612 • 10−3 (movimos la coma decimal 3 lugares hacia la derecha).
Nótese que la cantidad de lugares que movimos la coma(ya sea de izquierda a derecha) nos indica el exponente que tendrá la base 10 (si la coma la movemos dos lugares el exponente es 2, si lo hacemos por 3 lugares, el exponente es 3 y así sucesivamente.
Nota importante:
Siempre que movemos la coma decimal hacia la izquierda el exponente de la potencia de 10 será positivo.
Siempre que movemos la coma decimal hacia la derecha el exponente de la potencia de 10 será negativo.
|
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjmsiuMs5j4nsVrhvULE1FERnmFqmFdL0uu__ODX3-Daeb4XYUrNkyR9nmT_MVHQqRoM6yrfA3O4iX9fj3k_phxg9wMVxbYmu3pjU-t702vEUmrHWOJr2h1FwESzWWquI1i4M2XAGFVLCFu/s1600/4.png)
Es importante observar que el número es un decimal cuya parte entera tiene
una sola cifra distinta de 0.
Ejemplo:
El ser vivo más pequeño es un virus cuyo peso es de 10 elevado a las -21 Kg. y el más grande es la ballena azul que pesa cerca de 1,38 x 10 elevado a la 5 kg.¿Cuántos virus serán necesarios para conseguir el peso de la ballena?
Rta: harán falta 1,38 x 10 elevado a la 26 virus
Truncamiento
En el subcampo matemático del análisis numérico, truncamiento es el término usado para reducir el número de dígitos a la derecha del separador decimal, descartando los menos significativos.
Por ejemplo dados los números reales:
- 3,14159265358979...
- 32,438191288
- 6,3444444444444
Para truncar estos números a 4 dígitos decimales, sólo consideramos los 4 dígitos a la derecha de la coma decimal.
El resultado es:
- 3,1415
- 32,4381
- 6,3444
Nótese que en algunos casos, el truncamiento dará el mismo resultado que justo en el redondeo, pero el truncamiento redondea hacia abajo los dígitos, cortando en el dígito especificado (salvo cuando los sucesores dígitos sean 0, en cuyo caso el truncamiento será indistinto). El error de truncamiento puede ser hasta el doble del error máximo que se puede tener usando redondeo. En binario es el mismo procedimiento.
a) REDONDEOS
Los números decimales se pueden redondear:
- A la unidad: consiste en eliminar la parte decimal, aproximándola a la unidad más cercana. Si la parte decimal es igual o inferior a 0,500 se aproxima a la unidad inferior, si es superior se aproxima a la unidad superior.
4,14 se aproxima a 4 (ya que la parte decimal es 0,1)- A la décima: consiste en dejar una sola cifra decimal, aproximando las centésimas a la décima más cercana. Si la parte centesimal es igual o inferior a 0,050 se aproxima a la décima inferior, si es superior se aproxima a la décima superior.
4,673 se aproxima a 5 (ya que la parte decimal es 0,6)
4,449 se aproxima a 4 (ya que la parte decimal es 0,4)
4,399 se aproxima a 4 (ya que la parte decimal es 0,3)
4,723 se aproxima a 5 (ya que la parte decimal es 0,7)
4,14 se aproxima a 4,1 (ya que la parte centesimal es 0,04)- A la centésima: consiste en dejar tan sólo dos cifras decimales, aproximando las milésimas a la centésima más cercana. Si la parte milesimal es igual o inferior a 0,005 se aproxima a la centésima inferior, si es superior se aproxima a la centésima superior.
4,673 se aproxima a 4,7 (ya que la parte centesimal es 0,07)
4,449 se aproxima a 4,4 (ya que la parte centesimal es 0,04)
4,399 se aproxima a 4,4 (ya que la parte centesimal es 0,09)
4,723 se aproxima a 4,7 (ya que la parte centesimal es 0,02)
4,14 se aproxima a 4,14 (ya que la parte milesimal es 0,000)b) TRUNCAMIENTO
4,673 se aproxima a 4,67 (ya que la parte milesimal es 0,003)
4,449 se aproxima a 4,45 (ya que la parte milesimal es 0,009)
4,399 se aproxima a 4,40 (ya que la parte milesimal es 0,009)
4,723 se aproxima a 4,72 (ya que la parte milesimal es 0,003)
En el truncamiento de un número decimal se eliminan las cifras a partir de aquellas en la que se realiza el truncamiento.
- Truncamiento por la unidad: se eliminan todas las cifras decimales.
45,325 se trunca por 45- Truncamiento por la décima: tan sólo se deja esta cifra decimal:
122,3434 se trunca por 122
91,435123 se trunca por 91
45,325 se trunca por 45,3- Truncamiento por la centésima: tan sólo se dejan dos cifras decimales:
122,3434 se trunca por 122,3
91,435123 se trunca por 91,4
45,325 se trunca por 45,32Y así sucesivamente.
122,3434 se trunca por 122,34
91,435123 se trunca por 91,43
No hay comentarios:
Publicar un comentario